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GENERAL INTRODUCTION 

The goal of a synthetic organic chemist is not only the synthesis of complex natural 

products, but also to synthesize these products using novel methodology and to develop a 

concise, efficient route. A problem that one leams while developing an approach is that the 

first route rarely works, so one must be ready to adapt to the inevitable stumbling blocks 

that lie in the original approach. The purpose of this research was to develop convergent 

routes to natural products that contain [3.2.1] bicyclic ring systems. What will be shown is 

the evolution of tliese approaches toward that goal. Part I describes an approach to 

kaurenoid natural products using bridgehead enone Diels-Alder methodology to synthesize 

the tetracyclic carbon frameworiE. Part n describes a conceptually different approach to 

kaurenoid natural products. Finally, Part m describes an approach to trixikingolides 

natural products using bridgehead carbocation methodology. 
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EXPLANATION OF THESIS FORMAT 

This thesis is written so that each section can be regarded as a sq)arate article in 

publishable form. Therefore, the numbering of the figures, schemes, tables, and 

references is independent in each section. 
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PARTI: AN ATTEMPTED APPROACH TO KAURENOID NATURAL 

PRODUCTS USING A BRIDGEHEAD ENONE 

DIELS-ALDER REACTION 
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INTRODUCTION 

This manuscript will outline the synthetic program directed toward the synthesis of 

kauienoid natural products. The proposed route would allow a convergent synthesis that 

starts with the bicyclic unit intact. Previous syntheses of this class of natural products used 

linear approaches that usually synthesized the bicyclic unit late in the synthesis. Our 

atten^ts used a bridgehead enone Diels-Alder reaction to construct advanced intermediates 

in our synthesis. 
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HISTORICAL 

Unsaturation at a bridgehead position was long considered an unrealizable inter

mediate because of the strain that would be inherent in a compound such as 1. Compound 

1 can not confonn to a 120° bond angle needed for the classic carbon - carbon double 

bond. Recently two comprehensive reviews by Warner, ̂  and Kraus and coworkers^ have 

appeared that discuss reacdve bridgehead intermediates. Bridgehead enones (2) could play 

an important role in organic synthesis because of their high reactivity. Bridgehead enones 

would allow for the construction of quaternary carbons. Because of the constraints of the 

ring system, reactions could be highly stereospecific. 

The classical study of [n.3.1] bridgehead enones is attributed to reports by House and 

coworkers in the late 1970s and early 1980s. 3 ^ House and coworkers have synthesized a 

1 

O 

'(CH2)n 

2 
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variety of bridgehead enones including the bicyclo [5.3.1] undecenone 3,^ bicyclo [4.3.1] 

decenone 4,4 bicyclo [3.3.1] nonenone 5,3.5,8 and bicyclo [3.2.1] octenone 6 

O 

A 

and studied the stability and reactivity of these compounds. House found that as the ring 

size decreased the reactivity of the enone increased. This is a result of the increasing strain 

of the double bond, thereby forcing tiie double bond to twist from planarity. Using 

AUinger's MMPl molecular mechanics program. House has determined the average twist 

of the double bond and the inherent strain of each of the bicyclic systems (Table I) J These 

Table I. Selected Theoretical Data for Brigdehead Enones 

Enone average twist of C=C bond (°) inherent strain (Kcal / mol) ] 

3 

4 

5 

6 

4 

14 

21 

36 

16.9 

17.7 

21.3 

32.3 
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theoretical results coorelate well with the experimental results. Whereas enones 3 and 4 

can be isolated in the absence of nucleophiles and show no propensity to dimerize upon 

heating, enones 5 and 6 can not be isolated. If there is no nucleophile present, enone 5 

undergoes a facile [2 + 2] dimerization. The in situ generation of enone 5 produced three 

adducts 7,8, and 9.5 Enone 6, like 5, undergoes facile 1,4 - additions in the presence of 

a variety of nucleophiles, such as methanol, water and sodium phenylselenide.7 House 

O 

A 
0 0 0 0 0 

7 (57 %) 8(18) 9 (5 %) 

O O 

CH3OH, H2O or 

PhSeNa 8" 
10 R = OCH3 
11 R = OH 
12 R = SePh 

and coworkers have also shown that enones 5 and 6 undergo facile [4 + 2] cycloaddition 

with furan at ambient temperature. Enone 5 produced both the exo adduct 13 (as the 

major product) and the endo adduct 14 (as the minor product) in the Diels-Alder reaction.^ 

Recentiy Campbell and cowoikers proved the existence of enone 5 by preparing enone 5 

by flash vacum pyrolysis, and enone 5 was stable in solution at - 78 
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A EtgN 
-Br —^ 

^ o H 

13 

H 

14 

Bestmann and Schade have also been successful in preparing bicyclo [4.3.1] 

decenone 15, bicyclo [3.3.1] nonenone 16, and bicyclo[3.2.1] octenone 17 via 

(Ph)3P 

Base 

Base 

EtOH 
OEt 

IS 

o 

A 

16 

O 

EtOH 

O 

A 
-OEt 

EtOH 

O 

17 
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intramolecular Wittig reactions. These bridgehead enones were trapped with ethanol to 

give bridgehead ethers. 

The use of bridgehead enones as electrophiles has increased in recent years. Magnus 

and coworkers were the first to report the synthetic utility of bridgehead enones. In their 

elegant synthesis of (±)-kopsanone (18), they used the high reactivity of bridgehead 

enones to effect a facile 1,2 - shift of phenylsulfenic acid. Starting with aldehyde 19 they 

were able to convert 19 to the sulfoxide 20, which upon heating eliminated the 

phenylsulfenic acid to provide the bridgehead enone 21. The resulting phenylsulfenic acid 

added across the enone to form the sulfoxide 22. Sulfoxide 22 was then converted in 

three steps to (±)-kopsanone. 

19 

I 

SP2Ar 

CHO 
O > ^ 

^ # 

Ph •^SOzAr 

A 
- M 

20 

O 

"^SOgAr ^SOjAr 

22 18 
21 
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Kraus and Hon also successfully employed a bridgehead enone in one of their two 

short approaches to (±)-lycopodine 23.^^ The bridgehead enone was generated in situ by 

a dehydrohalogenation reaction of the bridgehead bromide 24. Compound 24 was formed 

in seven steps from 25. The enone 26 was generated by the addition of 1,8-diazobicyclo 

[5.4.0] undec-7-ene (DBU) and was then trapped with 3-amino- 1-propanol to give 27. 

Ketone 27 has been previously converted to lycopodine in two steps by Heathcock et al. 13 

24 

OBs 
DBU 

r-
OBs 

[2«] 

cT OH 

27 
23 

Kraus and Yi have also been successful in adding cuprates to in situ generated 

bridgehead enones.̂  ̂^ variety of cuprates such as methyl, vinyl, and phenyl have added 

1,4 in greater than 50% yield to bridgehead enones derived from bromides 28 or 29. 

Either potassium r-butoxide or lithuim 2,6-di-r-butyl-4-methylphenoxide was used as the 

base. This methodology allows for the alkylation at a bridgehead position. 
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o 
A 

28 R = SPh 

29 R = H 

_ f-BuOK or 
•Br ^ 

«R yy""" 

Ŝ Oi 
= SPh /.Bu 

O 

A 

^R 

R ^CuLi or 
# 

R'MgBrCuLi 

O 

A 
.R' 

"R 

Kraus and coworkers have also reported the synthetic utility of the [2 + 2] addition of 

electron rich alkenes to bridgehead enones.^5 in the reaction of bridgehead bromide 28 

and 1,1-dimethoxyethene 30 in the presence of triethylamine, adduct 31 was formed in 

100% yield. After reduction followed by deacetylation, diketone 32 was formed. This 

diketone was proposed to be a key intermediate in the synthesis of the taxane class of 

natural products. 

EtjN 

OCH, 

OCH3 

'SPh 

31 

31 C 

32 
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A systematic study of the potential of bicyclo [3.3.1] nonenones as dienophiles has 

variety of dienes formed exclusively exo Diels-Alder adducts when excess triethylamine 

was added to a solution of the bridgehead bromide and 2 to 4 equivalents of the diene 

(Table II). It is important to note that 1,1-3-trisubstituted dienes (entries 5,6, and 7) which 

are usually unieactive in the Diels-Alder reaction gave satisfactory yields of Diels-Alder 

adducts. The identity of the adducts were proven by using 2D NMR COSY and NOES Y 

techniques on the adduct in entry S Table H. 

Kraus has proposed transition state 33 as the rationale for the exclusive formation of 

the exo adducL^^ in normal Diels-Alder reactions, the endo products are favored due to 

favorable secondary orbital overlap interactions, ̂ 8 but in this case the endo transition state 

34 is sterically congested. The secondary orbital overlap interaction can not be attained; 

therefore, the less sterically demanding transition state 33 determines the stereochemical 

course of the reaction. Kraus has also suggested that the mechanism may not be concerted 

been completed by Kraus and coworkers. 17 in this study it was determined that a 

R 

33 34 
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Table n. Reported Deils-Alder Reactions with Bridgehead Enones 

R y R ,  

Entry Rj R2 R3 R4 R5 R5 % yield 

O 

A 
.Br 

R« 

EtgN, Œ2CI2 

0®C-25°C 
i r ' R 5  
R« 

R2 

R^ 

1 (CH2)4 OTMS H SPh H 97 

2 (CH2)4 OTMS H H CH3 52 

3 (CH2)4 OTMS CHs H CH3 -

4 OTMS H OŒ3 H SPh H 98 

5 OTMS H CH3 SPh H 46 

6 OTMS H CH3 SPh H 81 

7 OTMS CH3 H Œ3 SPh H 46 
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and that an ionic or polarized transition state may be more appropriate. The possibility of 

an ionic mechanism was supported since the a-P unsaturated ester 35 is the sole product 

formed in the reaction of diene 36 with the bridgehead enone derived from 28.17 Kraus 

28 + 
TMSO^ OCH3 

36 

vEtaN / 
CO2CH3 

"SPh 

35 

- O 

A 0CH3 
+ 
*OTMS 

"SPh 

has proposed that this type of mechanism would also produce exclusively exo adducts by 

minimizing steric interactions in the intermediate 37. Kraus and Liras have also reported 

further evidence of an ionic mechanism in the report of the inverse selectivity of diene 38 

in the bridgehead enone Diels-Alder reaction. 19 The adduct 39 is the only adduct that was 

detected, and was the expected product from an ionic mechanism. Liras has since reported 

the bridgehead Diels-Alder reaction using diene 40.^^ This diene was reported as the 

definitive test for the ionic mechanism, since products of a cyclopropyl- carbinyl cation 

rearrangements were expected if an ionic mechanism was involved. The only product 
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detected was adduct 41, which has led Kraus to propose a polarized rather than an ionic or 

a concerted mechanism for the bridgehead enone Diels-Alder reaction. 

TMSQ 
28 

* ^ 

EtjN 

28 +  
OTMS EtgN 

•-0 R 

OTMS + 
"SPh 

37 

I 

OTMS 
SPh 

OTMS 

SPh SPh 

O 

OTMS 

SPh 

39 
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28 + 
TMSO EtgN 

40 

*OTMS 

SPh 

41 
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RESULTS AND DISCUSSION 

The key to our approach centered around the use of a bridgehead enone Diels< Alder 

reaction to construct the tetracyclic ring system. This approach would allow for a 

convergent synthesis if an appropriate diene was used and would allow for a synthesis that 

contains a latent bicyclo [3.2.1] octane ring system early in the synthesis. The retro-

synthetic analysis of the approach to corymbol 42^1 is depicted in Scheme I. Corymbol 

will be synthesized from intermediate 43 by known functional group manipulations. 

Scheme I 

A 

Br ^OTMS 

•'"SPh 47 

28 
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Ketone 44 will be formed finom 43 by a previously reported ring contraction.22 This ring 

contraction involves oxidation of the sulfide to the sulfoxide followed by elimination. The 

alkene is oxidation to the dialdehyde, then intramolecular aldol condensation to form a ring 

contracted unsaturated aldehyde. This aldehyde is reduced to the 43. An iterative methyl 

cuprate addition was envisioned to transform 45 to 44. Enone 45 will be synthesized by 

chlorotrimethylsilane assisted methyl cuprate addition to 46 followed by oxidation to the 

enone. Enone 46 is then synthesized by a bridgehead enone Diels-Alder reaction between 

the bridgehead bromide 28 and diene 47, followed by oxidation to the enone. 

Our first goal was the synthesis of the tetracyclic enone 46 from the bridgehead 

bromide and the previously reported diene 47.23 The bridgehead enone Diels-Alder 

reaction with the bridgehead bromide 28 and diene 47 yielded the Diels-Alder adduct 48 

in 70% yield as the only diastereomer. The next task was the oxidation of the enol silyl 

ether to an enone. A Saegusa reaction [Pd(0Ac)2, l,4-benzoquinone]24 was used to 

regioselectively oxidize 48 to the needed enone 46. Two possible enones 46 and 49 

could be formed. Enone 46 is the only isomer formed because of nonbonded interactions 

with the P-phenylthio group (PhS) only allowing intermediate 50 to form. The cis 

addition across the C - H bond occurs regioselectively to the weaker tertiary C-H bond 

OTMS O 

OTTMS 
Vx^""»SPh 

48 47 28 
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Pd(0Ac)2, 
4 a 1,4- benzoquinone 

CH3CN, 25 ®C 

Vx^"»SPh 

48 
Pd(0^ 

AcOTMS 

•H |>PdOAc-
O 

L~S%""»SPh 

50 

H OAc 

1 

46 

Pd®+AcOH 

giving the intermediate 51 which eliminates to enone 46 as the sole product. 

With the enone in hand, the next objective was the addition of the C -10 angular 

methyl group (kaurene numbering) to form 52. Several methyl cuprate reagents, such as 

(CH3),CuMy 
46 

V^^-nSPh 
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heteiocuprates,^^ boron trifluoride etherate assisted cuprates,26 and chlorotrimethylsilane 

assisted cuprates,^^ were employed to add to the enone, but all attempts failed One group 

that did add to the enone was a cyano group. Using the conditions of Utimoto and 

coworkers (diethyl aluminum chloride and trimethylsilyl cyanide)28 the nitrile 53 was 

46 
Et2Aia,TMSCN 

3 
PhCHj, 25 °C OIMS 

produced efGciently. Nitrile 53 was not able to be reduced to aldehyde 54 with diisobutyl 

aluminum hydride (DIBAL),^^ nor could it be oxidized to the peroxyimidic acid using 

hydrogen peroxide.̂ O The later reaction could have led to the amide 55. The failure of 

53 

Œ0. 

OTMS 

.NH 

H2O2 
53 W 

OIMS 
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these reactions was attributed to a steric effect due to nonbonded interactions between the 

cyano group and the axial hydrogen at C - 4 (kaurene numbering). If the enol silyl ether 

could be oxidized to enone 56, the non-bonded interaction would be minimized. First the 

Saegusa reactions conditions were attempted, but these conditions failed to provide enone 

56. There had been a report by Minami and cowoikers^l of the success of oxidizing enol 

silyl ethers to enones using Pd(0Ac)2, diallyl carbonate, and l,2-bis(diphenylphosphino)-

ethane. These conditions were also unsuccessful in oxidizing 53 to 56. 

Pd(0Ac)2 
benzoquinone 

S3 
CHjCN 25 °C 

or 

Pd(0Ac)2, DPPE, 
diallycaibonate 
CHgCN 25 ®C 

Because of the difficulty in transforming the cyano group to the angular methyl 

group, a strategy to 43 was devised which would allow the addition of the angular methyl 

group as part of the diene. A tricyclic precursor would be formed in the bridgehead 

Diels-Alder reaction instead of a tertracyclic precursor. The fourth ring would be annulated 

later in the synthesis. This strategy is outiined in Scheme n. Enone 57 would allow for 

the synthesis of the geminal dimethyl group by a methyl cuprate addition. Enone 57 would 

be prepared by a Diels-Alder reaction between enone 58 and piperylene followed by 

isomerization of the double bond. Enone 58 would be synthesized from the bridgehead 

Diels-Alder adduct 59 by oxidation to the enone, deprotection of the ethoxy ethyl ether, 
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then oxidation of the allylic alcohol to the aldehyde. Adduct 59 would be prepared by a 

bridgehead enone Diels-Alder reaction between bridgehead bromide 28 and diene 60. 

Scheme n 

r# 

^s%^~SPh 

43 

O 

A 
Br + 

v3^".fSPh 

28 

O CHO 

OEE 

.^OIMS 

o OEE 

60 

Kx '̂̂ SPh 

59 

The diene 60 is prepared in four steps from 2-butene-l,4-diol (61). Protection of the 

diol as the diethoxyethyl ether was followed by ozonolysis which produced the protected 

hydroxy acetaldehyde 62. Aldehyde 62 was transformed to diene 60 by a Wittig reaction 

with the keto phosphonate 63^2 to form enone 64, followed by reaction of the resulting 

enone with trimethylsilyl triflate (TMSOTf) and triethylamine, formed diene 60. The 

bridgehead enone Diels-Alder reaction with the bridgehead bromide 28 and 1.2 equivalents 

of diene 60 produced the Diels-Alder adduct 59 as a single diastereomer. This adduct was 
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converted to the enone 63 using the Saegusa reaction and then was deprotected with dilute 

acid in tetrahydrofuran to form the allylic alcohol 66. 

1) ^OEt, PPTS 

O 

•WPiSsA. 

^ 64 HH' _ 
2) O3, CHoClg, -78 ®C QHg, reflux 

80% 

Jls^ TMSOTf, EtgN ( 

EED. Jl CH^Qz 0»C.25'C EEO^ 
82% 

64 60 

OTMS 

O ^ OEE 

28 + 60 
EtgN, CH2CI2 

I 
0®C-25°C 

72% 
œL 
^Vx^"">SPh 

59 

Pd(OAc)2, 
59 ^ 

benzoquinone 
Œ3CN25°C 

o 

65 
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O 

\ '̂*»SPh 

65 

0.04 N HQ 

Et20 

The conversion of the allylic alcohol to the aldehyde proved not to be a simple task. 

The conditions attempted are reported in Table m. None of the conditions attempted gave 

Table m. Oxidation of Allylic Alcohol 66 to Aldehyde 58 

Oxidant rield 

PDC 

FCC 

Jones 

(C0C1)2, DMSO, EtgN 

TFAA,DMS0,Et3N 

53% 

40% 

decomposition 

no reaction 

no reaction 

satisfactory yields of the aldehyde. The best, PDC,33 produced the aldehyde in 53% yield 

with significant decomposition of the starting material. Also of note are the attempts with 

conditions described by Rousch^^ and Franck 35^ where in the only detectable product 

was the starting material. 
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In view of these results, a diene which had the allylic carbon at the proper oxidation 

state was envisioned. Diene 67 was prepared in a similar manner as diene 60 from the 

EtO^ŒO 

BO 

68 

(PWSPSJK 

63 

C5H5, reflux 

82% 

1)LDA,THF 
-78 X 

2)TMSa 
-78®C-25®C 

98% 

BO. 

BO 

OIMS 

67 

previously reported aldehyde 68.36 Diene 67 was used in the bridgehead Diels-Alder 

reaction to form adduct 69 which was oxidized to the enone using the Saegusa reaction. 

The acetal was deprotected using FTSA in wet acetone to give the required aldehyde 58. 

Two different Diels-Alder reaction conditions were attempted to annulate the fourth 

O 

A 
O CH(0Et)2 

EtgN, CHgClg 

67 + .Br 0°C-25''C 
72% 

*"SPh 

1) Pd(OAc)2, 
benzoquinone 

CH3CN250 

'»SPh 2) FTSA 
aq. acetone 

58 
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ring of kaurenoid ring system to aldehyde 58. Using piperylene with Lewis acid catalysis 

(SnQ4) resulted in the isolation of the starting material. The other attempt with 

Danishefsky's diene^? at 190 "C resulted in the decomposition of the aldehyde 58. 

5 8 ^ No Reaction 
SnClx, CH2CI2 
25 ®C 

TMSO 

OCHg 
58 > Decomposition of 58 

190 "C 

The last avenue in this area that was investigated was a Michael addition to enone 65. 

Maruoka and coworkers have reported the 1,4 addtion of organolithiums and Grignard 

reagents to enones using a excess of methylaluminium bis-(2,6-di-f-butyl)-4- methyl-

phenoxide (MAD).38 There has been a report by Stem and Swenton that ketals direct the 

addition of organolithiums to quinone monoketals using MAD.39 The ethoxyethyl 

protecting group in 65 could be used to direct the addition to the enone. This reaction was 

attempted using /i-butyl lithium as a model study, but none of the addition product was 

detected in our system. 

OEE 

MAD, /t-Buli ,.. 65 = 

PhCHg, -78 «C 
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The attention was then turned to the previously reported bridgehead enone Diels-

Alder adduct 70. ̂ 7 if this adduct could be cyclized to 71, all of the carbons of the 

kaurenoid ring system would be in place. The problem would be reduced to modifîng the 

functionality to produce corymbol. In the key cyclization the trisubstituted double bond has 

to be activated in the presence of the more electron-rich enol sUyl ether. The hope was that 

the enol silyl ether was sufficiently hindered that a large and soft coordinating group (Y) 

would preferentially attack the trisubstituted double bond to form 72. With the knowledge 

that normal Lewis acids decompose adduct 70,40 various reagents were attempted to 

cyclize adduct 70. 

OTMS 

""^SPh 
71 

Y 

+ TBSX 

\^-*SPh 

70 

Y 

OTMS 

72 
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The first reagent was N-phenylselenophthalimide (NPSP), previously reported by 

intramolecular nucleophilic attack. In our hands, this reagent did not form the cyclized 

product 73. Another reagent that was attempted was the sterically demanding, weak Lewis 

acid mercury (II) iodide, but the reaction produced an uncharacterizable product Next 

dimethyl-(thiomethyl)sulfonium tetraflouroborate was tried. This reagent, developed by 

Trost and Murayama,'̂ ^ has been shown to activate double bonds to nucleophilic attack, 

but the same uncharacterizable product was formed as in the mercury (11) iodide case. The 

reaction was also attempted with a iron complex that has been previously used to activate 

Nicolaou and cowodcers.^1 The reagent has been shown to activate a variety of alkenes to 

70 

73 

SCH3 

70 

-78'C-25®C ^s^""»SPh 

74 
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double bonds to nucleophilic attack by enol silyl ethers.^3 This reaction condition also did 

not afford any of the cyclized product 75. 

1) Cp(C0)2Fe+ BF4-

70 
Œ2CI2 25 ®C 

2) dilute HQ 

rW 
^•^""•SPh 

75 

Our current strategy is centered around the formation of a five membered ring, then 

ring expansion to the needed six membered ring. Ito and coworkers have reported the 

intramolecular cyclization of enol silyl ethers to alkenes.^ In our system the expected 

product was 76. Compound 76 could be oxidized to the epoxide 77 which could be 

70 
Pd(0Ac)2 

CH3CN 
25 "C 

CH2CI2 
^sX-KSPh 

MCPBA 
77 

76 

Lewis 

add 

•^SPh 
77 

—^*"»SPh 

78 
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rearranged to the ring expanded alcohol 78. Alcohol 78 will allow the synthesis of 

kaurenoic acids which have important biological activity. 
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EXPERIMENTAL 

General 

Unless otherwise stated, reagents used were purchased from commercial suppliers 

and were not purified unless stated. Dry diethyl ether and tetrahydrofuran were disdlled 

&om benzophenoneketyl, benzene was distilled fix>m lithium aluminum hydride, 

methylene chloride and acetonitrile were distilled fipom calcium hydride, and toluene was 

distilled fix>m sodium. Unless otherwise noted, all reactions were conducted in an argon 

atmosphere. For reactions requiring anhydrous conditions, the apparatus was flamed dried 

under a stream of argon. Melting points were determined using a Fisher-Johns melting 

point apparatus and are uncorrected. Silica gel used for flash chromatography was EM 

Science Kieselgel 60 (230-400 mesh) or Mereck 60 grade (230-400 mesh). Thin layer 

chromatography was performed using EM Science Kieselgel F254 prepared plates with 

thickness of 0.25 cm. The solvent systems were suitable mixtures of hexanes (H) and 

ethyl acetate (EA). High field proton nuclear magnetic resonance spectra were obtained at 

300 MHz using Nicolet Magnetics Corporation 1280 spectrometer. All chemical shifts are 

reported in s relative to tetramethylsilane as an internal standard. Coupling constants (J) are 

reported in Hz. Splitting patterns are designated: s (singlet), d (doublet), t (triplet), q 

(quartet), bs (broad singlet), m (multiplet) ABq (AB quartet). Carbon-13 nuclear magnetic 

resonance spectra were recorded at 75.46 MHz using a Nicolet Magnetics Coiporation 

1280 spectrometer and are reported in s relative to the central peak of CDCI3 (77.06 ppm). 

Infarred spectra were recorded using a Perkin-Elmer 1320 infared spectrophotometer and 

are reported in cm'l. EI and CI (using tiie gas reported) low resolution mass spectra were 
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recorded on a Finnegan 4023 mass spectrometer. High resolution mass spectra were 

recorded using a Kratos model MS-50 spectrometer. 

2,3,4,6,8,9,10,ll,12aa-Nonahydro-7a-(phenylthio)-

6a,10-methanocyclo[a]napthalene-12,S-dione 46 

To a solution of 48 (632 mg, 1.44 mmol) in IS mL of CHgCN at ambient 

temperature was added Pd(0Ac)2 (190 mg, 0.86 mmol) and 1,4-benzoquinone (90 mg, 

0.86 mmol). The solution was stirred at ambient temperature for 16 h (a black suspension 

formed). The suspension was filtered through celite, then concentrated in vacuo. The 

crude product was purified by flash chromatography using 3 :1H : EA as elutent to yield 

484 mg (92%) of 46. TLC (3 :1, H : EA) Rf = 0.29. 1H nmR (CDOg) 5 1.2-1.5 (m, 3 

H), 1.6-1.85 (m, 6 H), 1.9-2.15 (m, 3 H), 2.55-2.15 (m, 6 H), 2.95 (dd, J = 17.2 Hz, 

4.9 Hz, 1 H), 3.28 (d, J = 15.9 Hz, 1H), 3.66 (bs, 1H), 7.20-7.40 (m, 5 H). 13c NMR 

(CDCI3) S 21.59,22.05,22.49,27.93,28.52,31.80,35.25,43.73,45.54,48.69, 

57.54,58.94,127.40,129.12,132.47,132.86,134.96,148.16,197.83,211.28. IR 

(CDCI3 solution) 2935,2860,1710,1662,1620,1375,1295,900,690cm-l. Low 

resolution mass spectrum m/e 55,67,84,109,215,257, 366. High resolution mass 

spectrum for C23H24BO2S requires 366.16536, measured 366.16599 (+ 1.7 ppm). 

7P-Cyano-2,3,4,6,8,9,10,11,12ap,12ba-decahydro-7a-(phenylthio)-5-[(trimethyl-

silyl)oxy]-6aa,10a-methanocycloocta[a]napthlene-12-one S3 

To a solution of enone 46 (133 mg, 0.36 mmol) in 3.5 mL of dry toluene at 0 °C, 

was added freshly distilled cyanotrimethylsilane (0.12 mL, 0.92 mmol). Diethylaluminum 

chloride (1.8 M in toluene) (0.62 mL, 1.12 mmol) was added dropwise. The solution was 



www.manaraa.com

33 

wanned to ambient temperature over 3h, then saturated NH4CI (10 mL) was added 

followed by 5% NaHCOg (25 mL). The resulting aqueous layer was extracted 3 x 10 mL 

of benzene, then dried over MgSO^. The crude material was purified by flash 

chromatography to yield 150 mg (89%) of 53. TLC (3 :1H : EA) Rf = 0.27. ^NMR 

(CDOg) 8 0.18 (s, 9 H). 1.38 - 2.00 (m, 12 H), 2.10 - 2.65 (m, 8 H), 3.05 (dd, J = 

17.2,4.9 Hz, 1H), 3.33 (bs, 1 H), 7.15 - 7.28 (m, 3 H), 7.35 - 7.42 (m, 2 H). IR 

(CHCI3) 3018,2942,2860,2300,1705,1660,1435,1248,1110,850 cm l. Low 

resolution mass spectrum m/e 73,110,224,247,265,287,357,375,438,465. 

2-(r-Ethoxyethyl)oxy-acetaldehyde61 

To 2-butene-l,4-diol 60 (2.0 g, 22.6 mmol) suspended m 40mL of dry methylene 

chloride at ambient temperature was added ethyl vinyl ether (5.40 mL, 56.5 mmol) and 

PPTS (0.14 g, 0.57 mmol). The suspension was vigorously stirred (a homogeneous 

solution resulted after 30 min) for 2 h. The resulting solution was diluted with 50 mL of 

methylene chloride, and washed 1 x 20 mL water, 2x20 mL 5% NaHCOg, and 1 x 20 mL 

brine. The organic layer was dried over Na2S04. The product was concentrated m vacuo 

to yield 5.05 g (96%) of the diprotected alcohol which was directly used in the ozonolysis. 

1h NMR (CDCI3) S 1.21 (t, J = 7.1 Hz, 6 H), 1.32 (d, J = 5.35 Hz, 6 H), 3.40 - 3.70 

(m, 4 H), 4.20 - 4.04 (bq, 4 H), 4.73 (q, J = 5.35 Hz, 2 H), 5.70 (t, J = 3.96 Hz, 2 H). 

13C NMR (CDCI3) 5 15.31,19.80,60.47,99.02,129.04. IR (CDCI3) 2990,2970, 

2950,1450,1385,1130,1085 cm"l. Low resolution mass spectrum CI (NH3) m/e 90, 

116,158,178,204,250 (M+ NH4), 276 (M+ OCH2CH2). To tiie crude product (5.05 

g, 1.92 mmol) dissolved in dry methylene chloride (200 mL) at -78 ®C was bubbled ozone 

until a blue color resulted (30 min). The excess ozone was removed by bubbling N2 into 
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the solution. Triphenylphosphine (5.53 g, 21.1 mmol) was added in five equal portions at 

-78 "C over 30 min. The solution was then warmed to ambient temperature, and the 

solution was concentrated in vacuo. The residue was diluted with 75 mL of hexanes and 

filtered through glass wool to remove the triphenylphosphine oxide. The crude product 

was distilled at 2 mm Hgina Kugekohr oven at 55 ®C to yield 4.6 g (72%) of 61. TLC (3 

: 1 H : EA) Rf = 0.25. 1 H NMR (CDOg) S 1.20 (t, J = 7.1 Hz, 3 H), 1.36 (d, J = 5.35 

Hz, 3 H), 3.46 - 3.70 (m, 2 H), 4.12 (s, 2 H), 4.81 (q, J = 5.35 Hz, 1 H), 9.73 (s, 1H). 

13c NMR (CDCI3) 6 14.94,19.24,61.18,69.82,99.69,200.59. IR (thin film) 2990, 

2980,2720,1735,1440,1380,1340,721,695 cm"l. Low resolution mass spectrum CI 

(NH3) m/e 90,132,150 (M+ NH4), 176 (M+ OCH2CH2), 282 (2M+ NH4). 

5-(l-Ethoxyethyl)oxy-3-penten-2-one 64 

To a solution of 62 (4.0 g, 30.27 mmol) in 75 mL of benzene, was added 

phospoylide 63 (14.5 g, 45.41 mmol). The resulting suspension was heated at 80 °C for 

3.5 h. The solution was cooled to ambient temperature, then concentrated in vacuo. The 

residue was diluted with a 3 :1 mixture of hexanes : diethyl ether (100ml), then filtered 

through glass wool. The crude material was purified flash chromatography eluting with 3 : 

1H : EA to yield 3.0g (57%) of 64. TLC (3 :1 H : EA) Rf=0.36; 1 H NMR (CDCI3) 5 

1.20 (t, J = 7.1 Hz, 3 H), 1.35 (d, J = 5.35 Hz, 3 H), 2.29 (s, 3 H) 3.40 - 3.75 (m, 2 H), 

4.10-4.35 (m, 2 H), 4.78 (q, J = 5.35 Hz, 1H), 6.33 (d,J = 15.9 Hz, 1 H), 6.82 (dt, J = 

15.9 Hz, 4.5 Hz, 1H). 13c NMR (CDCI3) S 15.17,19.61,27.67,60.77,63.23, 

99.29,129.84,143.25, 197.99. IR (tiiin film) 3005,2990,2900, 1675,1635,1445, 

1360,1257 cm"l. Low resolution mass spectrum CI (NH3) m/e 90,118,127,144,173 

(M+NH4), 216 (M+OŒ2CH2). 
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5-[(r-ethoxyethyl)oxy- l,3-pentadiene-2-oxy]-tnmethylsilane 60 

To a solution of enone 64 (0.86 g, 5.0 mmol) in dry methylene chloride (25 mL) 

cooled in an ice bath, was added triethylamine (1.39 mL, 10.0 mmol). TMSOTf (1.16 

mL, 6.0 mmol) was added dropwise to the stirred solution. The solution was slowly 

warmed to ambient temperature and stirred for a total of 8 h. The methylene chloride was 

removed invacuo, diluted with 50 mL of hexanes, then decanted. The solution was 

concentrated in vacuo to yield 1.0 g (82%) of 60. The crude material was of high purity 

and was not puriAed before use. ^ H nmR (CDClg) 8 0.23 (s, 9 H), 1.21 (t, J = 7.1 

Hz, 3 H), 1.33 (d, J = 5.35 Hz, 3 H), 3.45 - 3.60 (m, 2 H), 4.05 - 4.25 (m, 2 H), 4.31 

(s, 2 H), 4.75 (q, J = 5.35 Hz, 1H), 5.95 - 6.15 (mj = 15.9 Hz, 2 H), 6.82 (dt, J = 15.9 

Hz, 4.5 Hz, 1H); 13c NMR (CDOg) 5 15.17,19.61,27.67,60.77,63.23,99.29, 

129.84,143.25, 197.99; IR (thin film) cm"l. Low resolution mass spectrum CI (NHg) 

m/e 90,116,155,172,199,245 (M+H); High resolution mass spectrum for Ci2H2403Si 

requires 244.14947, measured 244.1487. 

1 a-[( 1 '-Ethoxyethyl)methyloxy]-1,6,7,8,9,10aa-hexahydro-5a-(phenylthio)-

3-[(trimethylsilyl)oxy]-4ap, 8|3-methanobenzocycloocten-10-one 59 

To a solution of diene 60 ( 0.82 g, 3.35 mmol) and bridgehead bromide 28 (0.90 g, 

2.79 mmol) in 2.8 mL of dry methylene chloride at 0 °C was added dropwise triethylamine 

( 0.51 g, 3.69 mmol). The resulting solution was slowly warmed to ambient temperature 

and stirred for lOh. The resulting suspension was diluted with hexanes, then filtered. The 

crude product could not be separated from 64 by flash chromatography and crude material 

was taken directly to the next step. An analytical sample was obtained by preparative thin 
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layer chromatography to yield the following data. TLC ( 3 :1, H : EA) Rf = 0.26. 1 H 

NMR (CDCI3) 5 0.19 (s, 9 H), 1.16 (bt, J = 7.0 Hz, 3 H), 1.24 (dd, J = 7.2 Hz, 5.35 

Hz, 3 H), 1.30 -1.68 (m, 3 H), 1.80 -1.95 (m, 2 H), 2.0 (bs, 1H), 2.60 - 3.05 (m, 3 

H), 3.26 -3.63 (m, 3 H), 4.58 - 4.63 (m, 1H), 4.95 (d, J = 5.2 Hz2 H), 4.75 (q, J = 

5.35 Hz, 1 H), 7.18 - 7.32 (m, 3 H), 7.38 - 7.43 (m, 2 H). 13c NMR 8.14,29.55, 

34.81,38.74,40.23,41.80,46.17,50.49,60.60,66.46,68.95, 89.07,98.26,99.79, 

103.25,126.96,128.91,132.42,133.33,135.52,149.86,150.38,214.02. IR(thin 

film) 2980,2940, 1690, 1480,1250,1180,1090,900,850 cm~^. Low resolution mass 

spectrum m/e 73,110,153,247,291,385,398,488. 

l-[(r-Ethoxyethyl)methyloxy]-6,7,8,9,10aa-pentahydro-5a-(phenylthio)-

4ap, 8p-methanobenzocycloocten-3,10-dione 65 

To a solution of crude 59 ( 0.90 g) in 25 mL of dry acetonitrile at ambient 

temperature was added Pd(0Ac)2 ( 310 mg, 1.40 mmol) and 1,4-benzoquinone ( 150 mg, 

1.40 nomol). The mixture was stirred for 10 h at ambient temperature. The resulting black 

suspension was purified by flash chromatography and yielded 0.72 g (62%) of 65. TLC ( 

3 :1 H : EA) Rf = 0.31; 1H NMR 8 1.10 -1.40 (m, 2 H), 1.45 -1.60 (m, 2H), 1.95 -

2.10 (m, 2 H), 2.25 - 2.60 (m, 3 H), 2.98 (dd, J = 14 Hz, 6 Hz, 1 H), 3.30 (d, J = 16.5 

Hz, 1 H), 3.42 - 3.65 (m, 1 H), 3.70 - 4.20 (m, 2 H), 4.62 - 4.75 (m, 1 H), 6.32 (d, J = 

8.3 Hz, 1 H), 7.21 - 7.32 (m, 3 H), 7.36 - 7.45 (m, 2 H). 13c NMR 8 28.22,30.28, 

31.80,38.63,39.34,44.94,53.91,54.94,58.89,60.98,61.19,64.13,99.46,125.50, 

127.61,129.22,152.62,134.66,137.09,140.90,197.98,214.02. IR (CDCI3) 2980, 

2925,1705,1675,1630,1480,1380,1230,1135,1085,900,685. 
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l-(hydroxymethyl)-6,7,8,9,10aa-pentohydro-5a-(phenylthio)-

4aP, 8P-methanobenzocycloocten-3,10-dione 66 

To a solution of enone 65 (0.72 g, 1.74 mmol) in 200 mL of THF at ambient 

temperature, was added 0.04 N HCl (60 mL). The solution was stirred for 12 h at ambient 

tempera ture .  The  crude  mater ia l  was  pur i f ied  by  f lash  chromatography e ludng wi th  3  :1H 

: EA to yield 0.40 g (67%) of 66. TLC (3 :1H : EA) Rf = 0.24.1H NMR 8 1.38 -1.40 

(m, 4 H), 1.80 - 2.14 (m. 2 H), 2.22 - 2.42 (m, 4 H), 2.46 (bs, 1 H), 3.00 (dd, J = 14 

Hz, 6 Hz, 1H), 3.31 (d, J = 15.5 Hz, 1H), 3.91 (bs, 1H), 4.02 (dd, J = 16.5 Hz, 6 Hz, 

1 H), 6.32 (bs, 1 H), 7.24 - 7.35 (m, 3 H), 7.38 - 7.48 (m, 2 H). IR (CDCI3 solution) 

3420,2950,2900, 1680,1645,1445,1360,1257,1050 cm'l. 
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PARTE: AN ATTEMPTED CONVERGENT APPROACH TO 

KAURENE NATURAL PRODUCTS 
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INTRODUCTION 

This manuscript will describe an attempted convergent approach to kaurene natural 

products. The Hrst approach was planned to use a Michael addition followed by an 

oxy-ene reaction to construct an advanced intermediate. The precursor to the oxy-ene 

reaction could not be prepared, so other types of cyclization were attempted. These 

approaches were also unsuccessful. A planned approach is also presented, but this 

approach has not been tested at this time. 
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HISTORICAL 

Kaurenes are a subclass of the family tetracyclic diterpene natural products. 1 

Examples of this class of natural products are kaurene 1,^ the furandiol cafestol 2,3 the 

diterpene alkoloid garryfoline 3,4 7-hydroxykaurenolide 4,5 and our synthetic target 

HO^ 

0 

corymbol 5.^ Of interest is that the higher funcdonalized members of this class are derived 

from (-) kaurene not (+) kaurene. The biological activity of this class is varied. Both 

kaurene 1 and corymbol 5 have been proposed as intermediates in the biosynthesis of 

natural products. (+) Kaurene has been proposed as a key intermediate in a variety of 
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gibberlen plant growth regulators, such as 67 Perezamador and Jiminez^ have proposed 

corymbol as the precursor of turbicoryn 7 which was isolated in 1964.8 

1 I > 

HOjC 

HO 

All diterpene natural products have geranyl geraniol pyrophosphate 8 or geranyl 

linalool pyrophosphate 9 as a common ancestor in their biosynthetic pathway,. ̂  The 

OPP 

8 

OPP 



www.manaraa.com

45 

accepted biosynthetic pathway of tetracyclic, diterpene natural products was proposed by 

Wenkert in 1955 (Scheme I).9 The first step was the formation of copalyl pyrophosphate 

Scheme I 

PPO. 

8 or 9 

10 

1 kaurene 

14 stachene 

13 atisirene 
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10,10 which was later proved by Sheeter and West^ and Fall and West^lb The second 

step was the formation of carbocation 11 by a carbocation cyclization, it is trapped by the 

vinyl group to provide the nonclassical carbocation 12. The mode of carbocation collapse 

determined whether kaurene 1, atisirene 13, or stachene 14 natural products are produced. 

Kaurene is a product of a Wagner-Meerwein shift of intermediate 12a. In 1980 Coates and 

Cavender reported their investigation into the stereochemistry of the conversion of copalyl 

pyrophosphate 10 to kaurene They synthesized geranyl geraniol pyrophosphate-

1-tritium 15 as a racemic mixture (15a) and the pure S form (15b). These products were 

separetly converted to (-) kaurene-14-t (16) using enzyme preparations from Marah 

macrocarpus. These products were transformed to ketone 17 in five steps. The ring 

^ X 

16a X=T,Y=H 

16b X = T, Y = H 

15 a Ci R,S 

15 b Ci S 

16 [  

P 

Ph^O 
17a X=H,Y=T 

17b X = T, Y = H 
18a X =H, Y =T 

18b X = T, Y = H 



www.manaraa.com

47 

opened product 18 was then provided by a photolysis of ketone 17. In the case of 15a 

59% of the tritium had been retained, whereas 99% of the tritium had been lost in 15b. 

From this result Coates and Cavender infers that the product from 15b is 16b which was 

the product of a net inversion at C -1 of 15b. They also synthesized copalyl 

pyrophosphate- 17(E)-tritium (19a) or S 17(E)-deuterium (19b). In this study 19 was 

converted to (-) kaurene-15- tritium (20a) and 15-deuterium (20b) using the same enzyme. 

PPO. 

19a X = T 

19b Y = D 

20a X=T 

20b X = D 

21 

They determined using equilibrium deuterium exchange reactions that the tritium and 

deuterium was contained at the exo position. This was further verified by the conversion 

of 20a to 21, since essentially all of the tritium had been lost. From the data, Coates 

proposed two possible mechanisms (Scheme II). Coates and Cavender contend that the 

anti Sn' pathway (path a) is favored over the syn S '̂ pathway (path b) by the prinicple of 

least motion. 

The bicyclic ring system of diteipene natural products have been synthesized by a 

variety of methods. One of the first reports was the synthesis of the kaurene diterpene 

phyllocladine 22 by Turner and Ganshirt in 1961.13 They converted tiie keto ester 2314 
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Scheme n 

OPP 
••H -H 

Path b Path a 
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H pCOgCH) è p c O î H  

23 24 

24 
BaX A T 

25 22 

to the diacid 24. The barium salt of 24 was heated to provide ketone 25. Ketone 25 was 

then converted to phyllocladene. 

Bell and Deland developed a versatile method that allowed for the synthesis of 

kaurene 1,15 atisirene 13,and hibaene 26.Their strategy was based on a Claisen 

rearrangement to construct a unit for the bicyclic ring system. Enone 271? was reduced 

and the resulting alcohol was converted to enol ether 28. The aldehyde was protected as 

an ethylene acetal, and the alcohol was oxidized to a mixture of ketones 30 and 31. 

Ketone 30 was converted to aldol product 32 which was used as a precursor to atisirene 

13 After deprotection of ketone 31, aldol product 33 was provided upon treatment with 

sodium methoxide. This intermediate was converted to kaurene 1. Ketone 31 was also 

used in the synthesis of a stachene diterpene, hibaene 26 

Masamune has developed a synthesis of keto acid 3418 which was used as a 

common intermediate in the synthesis of kaurene 1,1^ ganyime 35,20 and atisine 36.21 
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1) LAH 

H CHO 

,H 

29 

29 

1) 

2) BH3 THF 
H2O2, OH 

3) Jones oxd. 

OH 

30 

27 hibaene 

31 

I 1)H+ 
2) CHsONa 

13 

Keto acid 34 was synthesized from phenol 37. The key in Masamune's synthesis is the 

intramolecular alkylation to form the tricyclic dienone 38. This was accomplished by 

treating 37 with potasium f-butoxide. Dienone 38 was converted to acid 34 using 

standard functional group manipulations. 
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OTOP ^OTHP 

34 

OH 

36 
35 

Carbenes have been useful intermediates in the construction of the bicyclic unit of 

tetracyclic diterpenes. In a synthesis of isohibaene 39 by Kitadani and coworkers the 

bicyclic ring system was constructed by a carbene insertion into a carbon - hydrogen 

bond.22 Enol 40 was transformed to the |3- diazoketone 41. Upon heating 41 in 

cyclohexane in the presence of copper (II) oxide and light, the tetracyclic ketone 44 was 

provided. Ketone 42 was then used to prepare isohibaene 39. Tahara and coworkers used 

a similar strategy in their synthesis of phyllocladene 22 and kaurene 1.^3 Starting with 

abietic acid 43 (available from pine resin), diazoketone 44 was synthesized. Heating 

ketone 45 in the presence of copper (II) sulfate formed the carbene which added across the 

double bond to provide a 1:1 mixture of cyclopropanes 46 and 47. These cyclopropanes 
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I HJ>OH ^ r T Hj 

H 

40 41 

f Ng CuO hv^ 
A 

> 

42 39 

were reduced with lithium in liquid ammonia to form tetracyclic ketones 48 and 49. 

Ketone 48 was used in the synthesis of phyllocladene 22. Ketone 49 was used in the 

synthesis of kaurene 1. 

In a report of the total synthesis of cafestol 2, Corey and coworkers used a carbene 

insertion into a double bond to prepare a precursor of corymbol. ^ Diazoketone 50 was 

decomposed to the carbene by heating 50 with copper (H) bis-(salicylaldehyde-f -butyl-

amine) to provide keto ester 51. The keto ester was converted to alcohol 52 in three steps. 

Alcohol 52 was then employed in an acid catalyzed cyclization to synthesized pentacycle 

53. Pentacycle 53 was then converted to corymbol 2. 
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CO2Œ3 

44 

CuSQ 

refluxing 
cyclohexane 
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C02/"Bu 

ÇOgf-Bu 

Q N2 refluxing PhCHg 

1)NaBH4 
2) NaH, PhŒ2Br 

3)DIBAL, 

TFFA 

OBn 

2,6-lutidine 
-78 ®C 

53 

52 

53 
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RESULTS AND DISCUSSION 

The bicycio [3.2.1] octene 54 previously reported by Marinovic and Ramanathan^S 

appeared to be an attractive starting point for a convergent route to kaurene natural 

products. This route would entail a Michael addition followed by an oxy-ene reaction to 

construct the tetracylic ring system (Scheme I). The elegance of this approach 

Scheme I 

HO. I I 

HO^ 

TBSO O 

^ 55 56 

tï 
O 

54 

CO2CH3 

E = CO2CH3 

Michael 

addition 

TBSO 

Oxy-ene reaction 

O 
t 

57 
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would be the few steps required to construct a tetracyclic ring system which contains varied 

functionality that would allow the synthesis of many members of this class. This route 

would require the transformation of 54 to the Michael donor 55. Ketone 55 will be used 

in a Michael addition with the readily available dienone 56 to give the tricyclic oxy-ene 

precursor 57, which would be employed in the oxy-ene reaction to afford the key 

tetracyclic intermediate 58. 

The tncyclic keto-ester 54 was synthesized in a three step sequencers starting with 

m-anisic acid 59. m-Anisic acid was reductively alkylated with 2,3-dibromopropene 

followed by acidic workup to yield the enone 60 in 67% yield. The acid-enone 60 was 

esterified with diazomethane, then the [3.2.1] bicyclic ring system was formed via a vinylic 

radical cyclization (m-BugSnH, AIBN) to yield the bicyclic keto ester 54 in 59 % yield. 

The ester 1 was then transformed to the required enol ether 55 in three steps. The mixture 

of enol silyl ethers 62 and 63 were formed by reacting the keto-ester 54 with 

60 2) IN HQ THF 
RT 2h 

O 

CO2CH3 
2) «-BuSnH, AIBN 

benzene, 80 "C 
54 
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N^-diisopropylethlyamine and r-butyldimethylsilyl triflate (TBSOTf).26 The mixture 

of 61 and 62 was condensed with the lithium enolate of ethyl acetate to give the mixture of 

p-keto-esters 63 *md 64 which were decarboalkoxylated with diazabicyclo [2.2.2] 

octane (DABC0)27 to fonn a mixture of 55 and 65. 

(j-Pr)2NEt 
54 

TBSOTf, CH2CI2 

93% 

TBSO TBSO 

r fil-COjCHj + 6-C02CH3 

61 62 

TBSO 
O 1)LDA,THF Jl 

A -94»C 
OEt 

2) 61 and 62, THF 
-78 °C 

C02Et 

TBSO 

/ O 

70% 63 64 

63 and 64 
DABCO, toluene, 

140 "C 

TBSO 

A 

o 

TBSO 

55 65 

The feasibility of the Michael addition and the oxy-ene reaction sequence was tested 

with model studies. The results of the Michael additions to the known dienone 56^^ are 

contained in Table 1. The Michael adducts were formed in fair to good yields as 
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Table 1. Michael Additions to Ester Dienone 56 

9 LDA,THF O Li+ Jl^GOzCHg 

A  A  + n r  

Methyl Ketone Adduct R % yield 

66 83 

67 45 

68 50 

69 33 



www.manaraa.com

59 

mixtures of cis and trans isomers. Usually 30% of the mixture was the enol form of the 

p-keto ester. The Michael adducts 67 and 68 were also used in a model study of the 

feasibility of the oxy-ene reaction.29 Neither the thermal (heating > 200 ®C) nor the Lewis 

acid catalized oxy-ene reaction promoted the formation of 70 or 71. Considering the 

O 

J^COaCHs 

68 

68 

O 

A.CO2CH3 

67 

E = CO2 CH3 

failure to effect an oxy-ene reaction plus the uncertainty of the composition of the 

keto-enolsilyl ether 54, the strategy for the synthesis of kaurenoid natural products was 

changed. 

If a bromopropenyl group was substituted for the methyl group on the Michael adduct 

PhCHg 

200-220 »C 

70 

SnCl. 

CH2CI2 
25 "C 

70 

PhCHg 

200 - 220 ®C o 
11 
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Br 

73 

72 

68, the synthesis is reduced to cyclizing 72 to the tricyclic intermediate 73. Michael 

adduct 68 was employed as a model system for the cyclization. First a reversible 

carbocation cyclization was attempted. The carbocation 74 was expected to react with the 

acidic P-keto ester to form the tricyclic ring system. None of the reaction conditions 

employing iodine and a Lewis acid afforded the expected cyclized product. Nicolaou and 

XY 

74 
75 

U CHoCl 
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coworkers have reported the use of N-phenylseleno-phthalimide (NPSP) / SnCl^ as a 

promoter of cyclizations in certain systems.30 NPSP is not as reactive as other selenium 

reagents and is also sterically demanding because of the phthalimide moiety. In our case 

NPSP did not afford the expected product, but new and unidentifiable products were 

formed. 

SePh 

68 
N-PSP, SnCU 

CH2CI2 
not 

Next a radical cyclization was studied. There have been reports of the formation of radicals 

of the type 76 using manganese (111)31» 32 or silver (1)33 gajts. The radical formed could 

68 
M (I or m) 

77 
M (I or m) 

78 79 
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then add to the double bond forming 77 which could be oxidized by a second equivalent of 

the salt to give a carbocation 78. Carbocation 78 could then lose a proton to form 

diene 79. The standard reaction conditions [Mn(0Ac)3 / HOAc] failed in this system. 

The enone 80 was believed to have been formed in low yield, since phenol 82 was 

produced when |3-keto ester 81 was submitted to the standard reaction conditions. The 

Mn(OAc)3 
68 

HOAc 

O 

J ^COîŒs 

80 

O HO 
^COzEt Mn(0Ac)3 ^COgEt jy 

82 81 

failure of the reaction may have been due to an equilibrium between 77 and 78 that favors 

77, Therefore copper (H) acetate was added as a co-oxidant. Copper (II) acetate is known 

to oxidize carbon radicals to carbocations more readily than other metal salts. This addition 

did not promote the cyclization to the tricyclic ring system. Next, silver salts were tried. 

Either using standard conditions (Ag20 / DMSO, A) or conditions involving enolate 

formation (NaH, AgNOg, Cu(0Ac)2)^^ did not result in the formation of the desired 

tricyclic ring system 80. 

Snider and coworkers have reported the intramolecular cyclization of P-keto ester 
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radicals to electron-rich benzene rings.35 The cyclization was attempted with Michael 

adduct 69 using Manganese (ID) and silver (I) salts, but the tricyclic product 83 did not 

form, probably because the acetophenone moiety deactivated the benzene ring. 

AggO.DMSO 

68 70 "C 

79 

1) NaH, CH3CN 
68 I 79 2)AgN03,Cu(0Ac)2' 

CH3CN,70°C 

1 ^C02CH3 
AgzO.DMSO 

70 °C 

70 

OCH, 

OCH, 

83 

1) NaH, CH3CN 

2) AgN03, Cu(0Ac)2^ 
CH3CN, 70 ®C 
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With the failures of the carbocation and radical cyclizations, an anionic route has been 

devised, but has yet to be tested. This route is centered around an intramolecular Michael 

addition of 84 to form the tricyclic product 85. This intermediate was envisioned to be 

available from a Diels-Alder reaction between enone 86 and 2-trimethylsilyloxy-

1,3-butadiene (87). Enone 86 will be synthesized following a method developed by 

Baraldi and cowoikers.36 The Diels-Alder adduct will then be oxidized to the dienone 88 

by an Ito and coworkers reaction.37 Dienone 88 will be used as a Michael donor to form 

the precursor 84 to the Michael addition. After cyclization to the tricyclic intermediate 85 

the 

Br 

85 

Br 

84 
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xy 
isoph 2)Pd(OAc)2 

86 8« 

1)LDA 
88 • 84 

2)56 

bicyclo [3.2.1] octene ring system will be prepared by a vinyl radical cyclization which 

should provide our key tetracycic intermediate 58. This intermediate will be used to 

synthesize a variety of kaurenoid natural products using known functional group 

manipulations. 
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EXPERIMENTAL 

General 

Unless otherwise stated, reagents used were purchased from commercial suppliers 

and were not purified unless stated. Dry diethyl ether and tetrahydrofuran were distilled 

from benzophenoneketyl, benzene was distilled from lithium aluminum hydride, 

methylene chloride and acetonitrile were distilled from calcium hydride, and toluene was 

distilled from sodium. Unless otherwise noted, all reactions were conducted in an argon 

atmosphere. For reactions requiring anhydrous conditions, the apparatus was flamed dried 

under a stream of argon. Melting points were determined using a Fisher-Johns melting 

point apparatus and are uncorrected. Silica gel used for flash chromatography was EM 

Science Kieselgel 60 (230-400 mesh) or Mereck 60 grade (230-400 mesh). Thin layer 

chromatography was performed using EM Science Kieselgel F^g^ prepared plates with 

thickness of 0.25 cm. The solvent systems were suitable mixtures of hexanes (H) and 

ethyl acetate (EA). High field proton nuclear magnetic resonance spectra were obtained at 

300 MHz using Nicolet Magnetics Corporation 1280 spectrometer. All chemical shifts are 

reported in 5 relative to tetramethylsilane as an internal standard. Coupling constants (J) are 

reported in Hz. Splitting patterns are designated: s (singlet), d (doublet), t (triplet), q 

(quartet), bs (broad singlet), m (multiplet) ABq (AB quartet). Carbon-13 nuclear magnetic 

resonance spectra were recorded at 75.46 MHz using a Nicolet Magnetics Corporation 

1280 spectrometer and are reported in 5 relative to the central peak of CDCI3 (77.06 ppm). 

Infrared spectra were recorded using a Perkin-Elmer 1320 infared spectrophotometer and 

are reported in cm"l. EI and CI (using the gas reported) low resolution mass spectra were 

recorded on a Finnegan 4023 mass spectrometer. High resolution mass spectra were 
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recorded using a Kratos model MS-SO spectrometer 

1- (2-Bromo-2-propenyl)-4-cyclohexen-3-one-l-carboxylic acid 60 

To the m-anisic acid 59 (7.61g, 50 mmol) suspended in THF (40 mL) / NH3 (160 

mL) at -78 °C, was added in small pieces Li (0.83g, 120 mmol) until a blue color persisted. 

The mixture was then stirred an additional 25 min to which 2,3-dibromo-1 -propene (6.20 

mL, 60 mmol) was added dropwise over 10 min (solution changed firom blue to yellow to 

orange to white). The mixture was stirred for 15 min at -78 ®C, then solid NH4CI was 

cautiously added in three portions. Ammonia was removed under a stream of N2 while 

warming to ambient temperature. The residue was dissolved in H2O and washed twice 

with 100 mL Et^O. The aqueous layer was cooled to 0 "C, then carefully acidified to pH 4 

with cold concentrated HCl. The aqueous layer was extracted thrice with 200 mL of 

CHCI3 and dried over Na2S04. The chloroform solution was concentrated m vactu? to 

yield 14.1 g (103 %) of crude product which was dissolved in 40 mL of THF. To this 

solution was added 10% HCl (16.13 mL, 50 mmol), and the mixture was stirred for 2 h at 

ambient temperature. The solution was concentrated and 200 mL of Et20 was added. A 

precipitate formed immediately which was filtered to yield 8.74 g (67 %). The melting 

point was 176 -178 ®C. NMR (Dg acetone) 5 2.82 - 3.05 (m, 4 H), 5.59 (d, J = 1.8 Hz 

1 H), 5.76 (m, 1 H), 5.92 (dd J = 10.2 Hz, 2.7 Hz, 1 H), 6.98 (ddd, J = 10.2 Hz, 3.0 

Hz, 5.4 Hz, 1H). 13c NMR (Dg Acetone) 34.70,45.15,48.70,40.06,122.03,127.81, 

129.31,147.34,175.09,195.96 ppm. Low resolution mass spectrum m/e: 55,77,95, 

109,179,213,215,240,242,258,259,260,261; High resolution mass spectrum for 

CigHiiBrOg requires 257.98915, measured 257.98915. 
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Methyl l-(2-bronio-2-pix)pcnyl)-4-cyclohexen-3-one-l-carboxylate 60a 

To a solution of the acid 60 (8.41 g, 32.46 mmol) in a 2 ; 1 solution of CH2CI2 : 

Et20 (165 mL) separated in 5 lots was added diazomethane until the evolution of N2 gas 

had ceased. The solution was concentrated under a stream of N2, and the residue was 

purified by flash chromatography eluting with 2:1 Hex : EA to yield 60a 8.87 g (83 %) 

as a light yellow solid. TLC (3: 1H : EA) RF = 0.21. IR NMR (CDCI3) 8 2.45 - 2.60 

(m, 2 H), 2.80 - 3.00 (m, 4 H), 3.69 (s, 3 H), 5.58 (s, 2 H), 6.00 - 6.07 (dt, J = 1.8 Hz, 

10.2 Hz, 1H), 6.85 - 6.92 (m, IH). 13C NMR (ŒQ]) Ô 33.98,44.85,48.35,48.35, 

48.60,52.62,121.93,129.80,146.71,174.21,196.24. IR (CDCI3) 3150,2990,2950, 

2900,1810,1792,1730,1680,1621,1437,1385,1212 cm-1. Low resolution mass 

spectrum: m/e 59,68,79,105,121,133,193,213,215,242,243,272,274. High 

resolution mass spectrum for CnH^gBrOg requires 272.00480, measured 272.00466. 

Methyl 6-methylene-3-oxo-bicyclo [3.2.1] octane-1-carboxylate 54 

To a solution of the ester 60a (5.0 g, 18.31 mmol) in dry benzene (180 mL) at 80 °C 

was added a solution of n-BugSnH (5.91 mL, 21.97 mmol) and AIBN (0.30 g, 1.83 

mmol) in benzene (40 mL) over 2 h. The solution was stined an additional 1 h, then the 

benzene was removed in vacuo. The residue was dissolved in 85 mL of Et20 to which 35 

mL of H2O and KF 2H2O (8.24 g, 87.55 mmol) was added. The mixture was vigorously 

stirred overnight. The mixture was separated and washed twice with 50 mL of H20,50 

mL of brine and dried over Na2S04. The ethereal solution was concentrated in vacuo, and 

the residue was purified by flash chromatography using Florisil and eluting with hexanes to 

afford 2.52 g (71%) of 54. TLC ( 3 :1 H : EA) Rf = 0.27. 1h NMR (CDCI3) 5. 13c 
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NMR (CDCI3) 5 40.79,41.31,41.85,49.73,50.31,50.61,52.26,108.89,150.36, 

174.80,208.23; IR (CHOg) 3020,2960,1730,1718,1662,1437,1258,1230,1069, 

900 cm"l. Low resolution mass spectrum: m/e 39,53,77,91,107,119,135,151,162, 

194. High resolution mass spectrum for C11H14O3 requires 194.09429, measured 

194.09465. 

Methyl 3-(r-butyldimethylsilyloxy)-6-methylene-

bicyclo [3.2.1] oct-2-ene -1-carboxyxlate 55 and 65 

To a solution of the ketone 54 ( 2.05 g, 10.55 mmol) in CH2CI2 at 0 °C was added 

NJ>f-dlisopropylethylanûne (3.59 mL, 20.60 mmol) followed by dropwise addition of 

TBSOTf (2.72 mL, 11.85 mmol). The solution was slowly warmed to ambient 

temperature 16 h. The Œ2Q2 was removed in vacuo and hexanes were added. The 

precipitate was removed by filtering through Celite, then concentrated. The mixture was 

purified by flash chromatography using 6:1H : EA to yield 0.59 g (93 %) of a mixture of 

55 and 65. TLC (6:1 H : EA) Rf = 0.47. NMR (CDCI3) S 0.12 (s, 4.8 H), 0.14 

(s, 1.2 H), .90 (s, 7.2 H), .93 (s, 1.8 H), 1.70 - 2.22 (m, 4 H), 2.40 - 2.55 (m, 2 H), 

2.60 - 2.80 (m, 2 H), 2.91 (dd, J = 6.9 Hz, 4.5 Hz, 1 H), 4.54 (s, 0.8 H), 4.74 (s, 0.8 

H), 4.94 (s, 0.2 H) 5.03 (s, 0.8 H), 5.05 (s, 0.2 H), 5.32 (s, 0.2 H). 13c NMR (CDCI3) 

5 18.02,25.69,41.20,41.97,41.85,48.67,52.01,101.60,107.92,109.40,110.0, 

148.26,155.38,176.60. IR (ŒQg) 3030,2930,2860,1720,1718,1655,1360,1200, 

1150,835,780,680 cm"l. Low resolution mass spectrum: m/e 45,59,73,89,105, 

117,191,251,267,308. 
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Ethyl 3-(f-butyldimethylsilyloxy)-l-(2-carboxylate-l-ethanone)-

6-methylene-2-bicyclo [3.2.1] octene 63 and 64 

To a solution of LDA [prepared by the addition of w-BuLi (0.96 mL, 2.35 mmol) to a 

solution of diisopropylamine (0.36 mL, 2.57 mmol) in 5 mL of dry THF at O ®C] at -94 

"C, was added a solution of ethyl acetate (0.21 mL, 2.14 mmol) in 1 mL of dry THF over 

10 min. The solution was stirred at -94 ®C for 15 min, then wanned to -78 ®C. A solution 

of the mixture of 63 and 64 (300 mg, 0.97 mmol) in 2.5 mL of dry THF was added over 

15 min. The solution was warmed slowly to ambient temperature and was quenched with 

1 mL of saturated NH4CI. The THF was removed in vacuo, and the residue was diluted 

with 20 mL of Et20. The ethereal solution was washed twice with 10 mL of H20,10 mL 

of brine and dried over Na2S04. The crude product was purified by flash chromatography 

eluting with 3 :1 H : EA to yield 244 mg (69%) of a mixture of 63 and 64. TLC (6: 1 H 

: EA) RF = 0.47. 1h NMR (CDCI3) 8 0.12 (s, 6 H), 0.90 (s, 9 HO, 1.28 (t, J = 7.2 Hz, 

3 H), 1.60 - 2.25 (m, 3 H), 2.40 - 3.00 (m, 4 H), 3.52 (s, 0.8 H), 3.72 (s, 1.2 H), 4.20 

(q, J = 7.2 Hz, 2 H), 4.53 (bs, 0.4 H), 4.68 (bs, 0.6 HO, 4.74 (bs, 0.4 H), 4.89 (bs, 0.6 

H), 4.90 - 5.10 (m, 1 H). IR (CHCI3) 3060,2940,2860,1735,1710,1655,1470, 

1460,1360,1200,870,780 cm"l. Low resolution mass spectrum: m/e 59,73, 89,117, 

191,237,251,265,308,322,364. 

General Procedure for Michael Additions 

To a solution of LDA (1.2 equivalents) in dry THF at - 78 ®C, was added dropwise 

over 15 min a solution of the methyl ketone (1.1 equivalents) in dry THF. The solution 

was stirred for 20 min at - 78 "C. A solution of 56 (1 equivalent) in dry THF was added 

dropwise to the solution and stirred for 45 min at - 78 °C. The solution was warmed to 
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ambient temperature and quenched by the addition of excess saturated NH4CL The 

mixture was extracted thrice with 10 mL of Et20. then washed with 20 mL of brine and 

dried over Na2S04. The crude product was purifîed by flash chromatography. 

Adduct 66 

TLC (2:1 H : EA) RF = 0.43. Ir NMR (CDCI3) 5 1.0 -1.40 (m, 6 H), 2.60 -

3.50 (m, 4 H), 3.70, (s, 1.5 H), 3.72 (s, 0.9 H), 3.78 (s, 0.6 H), 5.80 - 6.00 (m, 1H), 

6.60 - 6.80 (m, 1H), 7.30 - 7.70 (m, 3 H), 7.85 - 8.00 (m, 2 H), 11.94 (s, 0.2 H). IR 

(CHOg) 3000,2950,1735,1710,1670,1605,1450,1460,1260,845 cm-1. Low 

resolution mass spectrum: m/e 51,77,105,121,149,181,199,225,253,268,300. 

Adduct 67 

TLC (3 :1 H : EA) Rf = 0.25. NMR (CDCI3) S 1.0 -1.29 (m, 6 H), 1.88 (s, 

1 H), 1.90 (s, 2 H), 2.13 (s, 1 H), 2.14 (s, 2 H), 2.25 - 3.50 (m, 4 H), 3.33, (s, 0.6 H), 

3.34 (s, 0.4 H), 3.68 (s, 0.6 H), 3.71 (s, 1 H), 5.80 - 6.10 (m, 2 H), 6.39 (d, J = 10.1 

Hz, 0.34 H), 6.72 (d, J = 10.1 Hz, 0.76 Hz), 7.30 - 7.70 (m, 3 H), 11.97 (s, 0.34 H). 

IR (CHCI3) 2950,2920,1730,1675,1612,1440,1380,1355,1232,900,730 cm'l. 

Low resolution mass spectrum: m/e 51,77,105,121,149,181,199,225,253,268, 

300. 

Adduct 68 

TLC (2:1 H : EA) Rf = 0.29. 1H NMR (CDCI3) 8 0.8 -1.80 (m, 9 H), 2.20 -

3.60 (m, 6 H), 3.69 (s, 2 H), 3.72 (s, 1 H), 5.50 - 5.60 (m, 2 H), 5.75 - 5.95 (m, 3 H), 

6.70 (d, J = 10.1 Hz, 0.67 H), 7.10 (d, J = 10.1 Hz, 0.33 Hz), 11.94 (s, 0.33 H). IR 
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(CHClg) 3010,2970,2930,1720,1670,1615,1510,1460,1380,1355,1225,1160, 

1120,1090 cm-1. 

Adduct 69 

TLC (2 :1 H : EA) Rf = 0.27. NMR (CDCI3) 5 1.00 -1.20 (m, 6 H), 2.64 

(dd, J = 14.8 Hz, 5.7 Hz, 0.3 Hz, 0.3 H), 2.96 (dd, J = 17.8 Hz, 5.5 Hz, 0.7 H), 3.06 -

3.72 (m, 3 H), 3.58 (s, 2 H), 3.62 (s, 1H), 3.85 (s, 4 H), 3.89 (s, 2 H), 5.85 - 6.02 (m, 

2 H), 6.42 - 6.56 (m, 2 H), 6.62 (d, J = 10.1 Hz, 0.3 H), 6.74 (d, J = 10.1 Hz, 0.7 Hz), 

7.38 (d, J = 8.8 Hz, 0.7 H), 7.83 (d, J = 8.8 Hz, 0.3 H) 11.97 (s, 0.3 H). IR (CHCI3) 

3000,2960,2840,1740,1650,1600,1498,1460,1420,1260,1240,1060,1030, 840, 

830 cm"l. Low resolution mass spectrum m/e 41,53,77,91,107,122,149,165,180, 

207,313,345,360. High resolution mass spectrum for C20H24O5 requires 360.15729, 

measured 360.15719. 
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PART m: AN APPROACH TO ISOCEDRANE NATURAL PRODUCTS 

USING A BRIDGEHEAD CARBOCATION 
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INTRODUCTION 

This manuscript will describe the synthetic program directed toward the synthesis of 

trixikingolide, an isocedrane natural product. The route uses a bridgehead carbocation to 

construct an advanced intermediate. The key step in the synthesis is a regioselective aldol 

condensation reaction to construct the cis fused five membered ring common in this class of 

natural products. The testing of this route is still in the infant stages, so this is only a 

preliminary communication. 
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HISTORICAL 

Trixikingolide Natural Products 

The trixikingolides 1 are a family of natural products that are earmarked by an 

unusual bicyclic ring system related to isocederene 2. The pentacyclic ring system of the 

trixikingolides contains a central bicyclo [3.2.1] octane unit with a cis fused five membered 

ring at carbons 6 and 10, and a six membered ring containing an enol acetal. The fifth ring 

is a lactone that bridges carbons 4 and 12. Many examples of trixikingolide natural 

products have been isolated and characterized. The discovery of this class was due entirely 

to Bohlman and coworkers in their chemotaxological investigation of Nassauvinea, a 

subtiibe of the tribe Mutisieae. In their study of many genera of this tribe, Bolhmann 

discovered that the aerial parts contained unusual highly oxygenated isocederene type 

natural products. This class of natural products was called trixikingolides. There are many 

examples in this class; such as, trixikingolide 1 isolated from Trixis compostia,^^^ ester 

diene 3 isolated from Trixis vantheric? ester lactone 4 isolated from Gungia stuebii,^ 

diacetate 5 isolated from Moscharia pinnatitida,^ triacetate 6 isolated from Pronstia 

cuneifolic Don formamendocim,^ and the trixikingolide 7 isolated from Perezia 

multifloraJ 

4 

1 2 
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The biosynthetic pathway of isocederene natural products has to this date not been 

elucidated, but many groups have proposed the pathway outlined in Scheme 1.1*8,9 The 

AcO, COoCH OAc 
iiiiii 

O 

O O 

OAc 
OAc 

mil/ 
OAc OAc 

senOf 
OAc OAc 

Scheme I 

OPP 

I 

1 

2 x C  

shift 

2 
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only uncertainity of this pathway is the unusual 1,2 carbon shifts that are needed to prepare 

isocederane. 

The synthesis of angular fused sesquiterpenes has been an active area of research, but 

there have not been any reports of the total synthesis of trixikingolide. Paquette^O and 

Cheney have reported an attempted synthesis of trixikingolide. Their approach was 

centered around an intramolecular alkylation to form the central bicyclo [3.2.1] octane unit 

from the tricyclic precursor 8. They were never successful in the cyclization of 8 to form 

tetracycle 9. Paquette and Cheney prepared a variety of precursors for the cyclization 

starting with diketone 10. Their first attempt was using a Prins reaction on aldehyde 11. 

X 

X 

HC 
PO2CH3 

8 9 

H 

10 

Heating 11 with a variety of Lewis acids did not provide the cyclized product 12. They 

also tried an aldol condensation to effect the cyclization. Using ketone 13 in both basic and 

acidic reaction conditions, aldol product 14 was not obtained. An initial alkylation to form 
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O 

H' 

.CO2CH3 Lewis acid 

H 

CO2CH3 

4 W 

13 

CO2CH3 

12 

CO2CH3 

14 

die bicyclo [3.2.1] octane moiety followed by an aldol condensation strategy was also 

attempted. An intermediate in the synthesis of 13 was converted to the ketone 15, but 

CO2CH3 

15 

XO2CH3 
H3C02C^ j 

17 
H3CO 

16 

AV H3O2C 
H3C0, 

H3C0 a" 
CO2CH3 

18 
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none of the alkylation conditions employed resulted in the formation of 16. Ester 17 was 

also prepared, and like 15 none of the cyclized product was detected. Both Paquette and 

Cheney concluded that the cyclizadon of 13,15, and 17 failed due to unattainable reaction 

trajectories and proximity effects even though there was precedent for such a cyclization. 

Danishefsky and coworkers were successful in the intramolecular alkylation of 19 to afford 

19 
20 

Bridgehead Carbocations in Organic Synthesis 

Bridgehead carbocations have the potential to be powerful intermediates in organic 

sythesis. These carbocations have been extensively studied in the physical organic 

community, and these results have been tabulated. The potential of these intermediates is 

due to the lack of rearrangements generally found in smaller bicyclic ring systems, and 

stereoselective additions to these intermediates. The use of bridgehead carbocations in 

organic synthesis has not been extensively explored. The thrust of the work has been 

reported in a review by Kraus and coworkers. 

One of the first examples was a report by Gray and Kelly, who employed 

bridgehead bromides in a Friedel-Crafts reactions. They found that treatment of bridgehead 

bromide 21 (R = alkyl) with aluminum trichloride and bromobenzene afforded 22. Kraus 
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21 22 

and Hon were also successful in generating bridgehead carbocations of bicyclo [2.2.2] 

octanes and reacting them with a variety of nucleophiles.^^ The carbocation from 

bridgehead bromide 23 was formed by the addition of silver (I) tetrafluoroborate in the 

presence of nucleophiles. When benzene was used as the nucleophile, 24 was obtained in 

90% yield. Other nucleophiles reported were enol silyl ether 25 which afforded ketone 26 

in 65% yield and allyltrimethylsilane which afforded 27 in 72% yield. They also reported 

the intramolecular version of this reaction. They employed bridgehead bromide 28 

23 24 

23 
OTMS 

26 
O 

25 

23 —• 

,TMS 

27 
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and used allyltrimethylsilane as the trapping agent to form alkene 29 in 71% yield. 

Benzene and enol silyl ethers have been shown also to be suitable nucleophiles in this 

sequence. 

Kraus and Hon have been successful in forming bridgehead carbocations of bicyclo 

[3.3.1] nonanes. 17 Bridgehead bromides 30 and 31 reacted in a similar manner as 

bridgehead bromide 23. Allyltrimethylsilane, amines, and enol silyl ethers were all 

suitable nucleophiles. They also discovered that diene 32 could be used as a nucleophile 

to afford 33. One observation was the formation of appreciable amounts of bridgehead 

23 29 

O 

30 R = H 
31 R = CH3CH=CH2 

fluoride when silver (I) tetrafluoroborate was used, but this type of side product could be 

avoided with the use of silver (I) triflate. They have shown the utility of bridgehead 

carbocation chemistry in their direct synthesis of (±)-lycopodine 34.17,18 Kraus and 
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AgOTf 

0  ̂
33 

32 

Hon legioselctively oxidized the alcohol 35 to a diol, then formed the benzene sulfonate 

36. The bridgehead bromide 37 was obtained by treatment of 36 with phosphorus 

tiibromide. Bridgehead bromide 37 was converted to 38 using silver (I) triflate and 

l-amino-S-benzyloxypropane. Kraus and Hon intersected with the synthesis of 

(±)-lypodine reported by Heathcock and cowoikers^  ̂by the deprotection of the benzyloxy 

group to provide 39. 

O 

A 

T 
35 

OH 
1) BHg THF 

> 

2) H2O2, HO 
3) PhSOgCl, pyr. 

O 

A 

T 
36 

-OH 

•OBs OBs 

37 
1) AgOTf 

BnO/\/^NH 

2 ) H 2 , P d / C  
38 R = OBn 3 4 
39 R = OH 
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RESULTS AND DISCUSSION 

In envisioning the synthesis of trixikingolide 1,1 bridgehead bromide 40 was 

predicted to be a key intermediate in the synthesis. The intermediate would allow for 

O 

appendage of the C ring using bridgehead carbocation chemistry. Our approach is outlined 

retrosynthetically in Scheme H. The advanced intermediate 41 was envisioned to be 

available from 42 by hydrogénation, elimination of the tiimethylsilyloxy group, and 

deesterification. Lactone 42 would be available from 43 by a Pummerer rearrangement,^^ 

followed by cyanohydrin formation and lactonation. The transformation of 44 to 43 is the 

key to our approach. After ozonolysis to form the dialdehyde, a regioselective aldol 

condensation must occur. Using molecular models, the aldehyde linkage at the bridgehead 

appears to be the most accessible to deprotonation which would afford 43 after reduction. 

Ester 44 will be synthesized from 43 by a Buchi ring contraction^ ̂  followed by Michael 

addition of an allyl group and alkylation. Compound 45 is obtained from a bridgehead 

carbocation reaction with allyltrimethylsilane 46 serving as the nucleophile. 

Starting the synthesis with bridgehead bromide 40,^^ the bridgehead position was 

alkylated with allyltrimethyl silane in the presence of silver (I) triflate to afford 45 in 78% 

yield. Ketone 45 was carbomethoxylated by the addition of potassium hydride and 

1 40 
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Scheme H. 

1 => 

''SPh 

45 

TMSO 
41 

HaCOoCW—v' 

S(0)Ph 

\ 
^ 40 + 

44 

,TMS 

46 

42 

HsCOgCmJ-/ U 

OH 
S(0)Ph 

43 

40 
AgOTf, 46 

CH2CI2 
0''C-25®C 

78% 

45 

KH. (Œ30)2C0 

0^-25 °C 
81% 

47 
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dimethylcarbonate to provide P-keto ester 47 in 81% yield.21 Now the stage was set for 

the Buchi ring contraction. The first step was the chlorination of the P-keto ester with 

r-butyl hypochlorite. In the case of 47, this intermediate could not be chlorinated. The 

p-keto ester moiety was activated by the formation of the enolate with sodium hydride, but 

none of the chlorinated product 48 was produced. The failure of the reaction is 

f-BuOa vv\ 
47 W 

MeOH, CHA 
-10»C-25°C 

cVS 

48 

1) NaH, THF 
0®C-25°C ... 

47 \\\> 48 
2) f-BuOa 

-10-25 °C 

rationalized by the presence of the phenylthio group. There has been a report of the 

oxidation of a sulfide to a sulfoxide using f-butyl hypochlorite.^^ 

At this point there were three different avenues to circumvent this problem. First the 

dianion of P-keto ester 47 could be formed and alkylated with allyl iodide. Second a 

photochemical ring contraction could be employed which had been previously reported for 

bicyclic ring systems.24 Third the sulfoxide could be formed followed by the completion 

of the scheme. Formation of the dianion was accomplished by using 2.3 equivalents of 

lithium tetrametliylpiperdinamide at -78 °C. Upon the addition of allyl iodide, a 

disappointing 1:1.5 mixture of 49:50 resulted which could be separable by 

chromatography. With the material in hand, the ozonolysis-aldol condensation sequence 
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DLiTMP.THF H 
-78 °C 

HgOi 

47 

49 • 50 

37% 56% 

1)03.CH2Cl2-78 "C 
thenPhaP, 
-78''C-25°C . ^ 

49 

2)(PhCH2)2NH2 + 0Tf 
CH2CI2 25 =C 12 h 

CHO 
'"'SPh 

was attempted^^ None of the desired product was detected in the reaction mixture. The 

photochemical avenue did not show any promise either. The P-keto ester was methylated 

with potassium f-butoxide and methyl iodide^^ to provide 51 in 61% yield. Irradiating 51 

f-BuOK, CH3I H3O 
47 

THF 
0®C-25°C 

61% •''SPh 

51 

with a Hanovia 450W medium presure mercury lamp did not afford the expected product, 

but desulfurization products might have been fornied by NMR spectroscopy. 

Compound 45 was oxidized with sodium periodate to yield 52 as a mixture of 

diastereomers that were not separable by flash chromatography in 87% yield. Sulfoxide 
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52 was then carbomethoxylated by deprotanation with potassium hydride and 

dimethylcarbonate to prepare 53 in 78% yield. This is our current point of progress in this 

area. P-Keto ester 53 has been chlorinated, but the conditions for the ring contraction have 

not been worked out at this point. 

NaI04, NaHCOj 
45 ^ 

MeOH, HoO u/n, njKj 
25'C2^ 

52  
KH H,ocXA 

(H3C0)2C0 
THF 

0®C-25®C 
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EXPERIMENTAL 

General 

Unless otherwise stated, reagents used were purchased from commercial suppliers 

and were not purified unless stated. Dry diethyl ether and tetrahydrofuran were distilled 

from benzophenoneketyl, benzene was distilled from lithium aluminum hydride, 

methylene chloride and acetonitrile were distilled from calcium hydride, and toluene was 

distilled from sodium. Unless otherwise noted, all reactions were conducted in a argon 

atmosphere. For reactions requiring anhydrous conditions, the apparatus was flamed dried 

under a stream of argon. Melting points were determined using a Fisher-Johns melting 

point apparatus and are uncorrected. Silica gel used frn* flash chromatography was EM 

Science Kieselgel 60 (230-400 mesh) or Mereck 60 grade (230-400 mesh). Thin layer 

chromatography was performed using EM Science Kieselgel F254 prepared plates with 

thickness of 0.25 cm. The solvent systems were suitable mixtures of hexanes (H) and 

ethyl acetate (EA). High field proton nuclear magnetic resonance spectra were obtained at 

300 MHz using Nicolet Magnetics Corporation 1280 spectrometer. All chemical shifts are 

reported in s relative to tetramethylsilane as an internal standard. Coupling constants (J) are 

reported in Hz. Splitting patterns are designated: s (singlet), d (doublet), t (triplet), q 

(quartet), bs (broad singlet), m (multiplet) ABq (AB quartet). Carbon-13 nuclear magnetic 

resonance spectra were recorded at 75.46 MHz using a Nicolet Magnetics Corporation 

1280 spectrometer and are reported in s relative to the central peak of CDCI3 (77.06 ppm). 

Infi-ared spectra were recorded using a Perkin-Ehner 1320 infared spectrophotometer and 

are reported in cm'l. EI and CI (using the gas reported) low resolution mass spectra were 
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recorded on a Finnegan 4023 mass spectrometer. High resolution mass spectra were 

recorded using a Kratos model MS-50 spectrometer. 

l-(2-Propenyl)-8-(phenylthio) bicyclo [3.3.1] nonan-3-one 45 

To a solution of bridgehead bromide 40 (0.75 g, 2.33 mmol) and allyltrimethylsilane 

(1.11 mL, 6.99 mmol) in 4.70 mL of dry methylene chloride at 0 °C, was added silver (I) 

triflate (0.66 g, 2.56 mmol). The suspension was slowly warmed to ambient temperature 

while stirring for 10 h. The suspension was diluted with 10 mL of brine, extract twice 

with 15 mL of methylene chloride and dried over Na2S04. The solution was concentrated 

in vacuo and purified by flash chromatography eluting with 4: 1H : EA to afford 0.62 g 

(91%) of 45. TLC (4:1H ; EA) Rf = 0.27. NMR 6 1.40 - 1.95 (m, 7 H), 2.08 (d, J 

= 17.6 Hz, 1H), 2.21 (dd, J = 13.7 Hz, 7.8 Hz, 1 H), 2.33 - 2.55 (m, 3 H), 2.65 (bd, J 

= 17Hz, 1 H), 3.03 (dd, J= 11.4Hz,4.7Hz, 1H), 5.10 -5.20 (m, 2H), 5.75 - 5.93 

(m, 1H), 7.20 - 7.30 (m, 3 H), 7.35 - 7.48 (m, 2 H). 13c NMR Ô 28.21,30.04,32.17, 

38.07,41.31,45.21,46.13,47.88,55.90,119.28,126.92,128.81,132.47,132.93, 

134.88,211.50. m (CHCI3) 3080, 3010,2930,2860,1705,1640,1585,1440,1230, 

925,690 cm-1. Low resolution mass spectmm m/e 55,67,79,91,109,119,135,150, 

177,245,286. 

Methyl 4-carboxylate-1 -(2-propenyl)-8-(phenylthio)-

bicyclo [3.3.1] nonan3-one 47 

To pentane washed KH (0.20 g, 5.0 mmol) at 0 *C, was added dropwise a solution 

of 45 (0.60 g, 2.09 mmol) in 7.5 mL of dry dimethylcarbonate. The suspension was 

wanned to ambient temperature and stirred for 16 h. Excess saturated NH4CI was added 



www.manaraa.com

93 

cautiously to quench the reaction. The mixture was extracted thrice with 25 mL of Et20, 

washed with 25 mL of brine and dried over Na2S04. The crude product was purified by 

flash chromatography eluting with 3 :1 H : EA to yield 0.58 g (81%) of 47. TLC (4:1 H 

; EA) Rf = 0.63. NMR 8 1.36 -1.46 (m, 1 H), 1.50 -1.82 (m, 3 H), 2.10 - 2.23 (m, 

2 H), 2.45 (dd, J = 13.7 Hz, 7.8 Hz, 1H), 2.59 (d, J = 19.8 Hz, 1 H), 2.90 (apparent q, 

J = 3 Hz, 1 H), 2.97 (dd, J = 14.7 Hz, 4.8 Hz, 1 H), 5.05 - 5.15 (m, 2 H), 5.70 - 5.90 

(m, 1H), 7.20.7.30 (m, 3 H), 7.35 - 7.48 (m, 2 H). 13c NMR 8 28.19,30.06, 32.30, 

38.00,41.38,46.73,47.92,55.90,57.90,102.65,119.30,127.04,128.90,132.60, 

132.23,133.23,148.06,172.35,199.36. IR (CHCI3) 3080,3010,2930,2860,1705, 

1640,1585,1440,1230,925,690 cm'l. Low resolution mass spectrum m/e 55,67,91, 

107,119,133,159,177,302. 

l-(2-Propenyl)-8-(benzenesulfenyl) bicyclo [3.3.1] nonan-3-one 52 

To a solution of 45 (150 mg, 0.52 mmol) in a 6:1 mixture of methanol and water 

(23 mL) at 0 °C, was added sodium periodate (235 mg, 1.10 mmol) and sodium 

bicarbonate (49 mg, 0.58 mmol). The suspension was warmed to ambient temperature and 

stirred for two days. The suspension was diluted with 24 mL of water, extracted thrice 

with 20 mL of Et20, and dried over Na2S04. The crude material was purified by flash 

chromatography eluting with 1:6 H : EA to yield 137 mg (87%) of 52 which was a 

mixture of diastereomers. TLC (1: 6 H : EA) Rf = 0.43. ^H NMR 8 0.80 -1.20 (m, 2 

H), 1.42 -1.56 (m, 1 H), 1.60 -1.95 (m, 3 H), 2.16 (d, J = 16.5 Hz, 1 H), 2.25 - 2.55 

(m, 3 H), 2.79 (dd, J = 14.0 Hz, 8.8 Hz, 1 H), 2.99 (dt, J = 16.5 Hz, 2.1 Hz, 1H), 3.19 

(bd, J = 16.5 Hz, 1H),, 5.18 - 5.44 (m, 2 H), 5.83 - 6.10 (m, 1 H), 7.40 - 7.80 (m, 5 

H). IR (CdClg) 3010,2860,2400,1705,1440,1220,1185,1040,930,770 cm'l. Low 
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resolution mass spectrum m/e 55,67,79,91,107,119,135,159,177,245,285,302. 

High resolution mass spectrum requires 302.13405, found 302.13333. 

Methyl 4-carboxylate-l-(2-propenyl)-8-( benzenesulfenyl)-

bicyclo [3.3.1] nonan3-one 53 

To pentane washed KH (87 mg, 0.76 mmol) at 0 °C, was added dropwise a solution 

of 52 (100 mg, 0.33 mmol) in 1.2 mL of dry dimethylcarbonate and 1.2 mL of dry THF. 

The suspension was warmed to ambient temperature and stirred for 16 h. Excess saturated 

NH4C3 was added cautiously to quench the reaction. The mixture was extracted thrice with 

210 mL of Et20, washed with 10 mL of brine and dried over Na2S04. The crude product 

was purified by flash chromatography eluting with 3 :2 H : EA to yield 110 mg (92%) of 

53. TLC (3 :2 H ; EA) Rf = 0.31. ^H NMR 8 0.80 -1.10 (m, 2H) 1.20 -1.38 (m, 2 

H), 1.64 -1.75 (m, 2 H), 1.85 - 2.02 (m, 1 H), 2.02 - 2.49 (m, 3 H), 2.73 - 2.98 (m, 3 

H), 3.18 - 3.41 (m, 1 H), 5.18 - 5.42 (m, 2 H), 5.82 - 6.08 (m, 1 H), 7.42 - 7.60 (m, 5 

H). IR (CHCI3) 3090,3980,2790,1730,1692,1640,1452,1392,1280,910,700 

cm-1. Low resolution mass spectrum m/e 69,83,98, 111, 123,151,195,223,271, 

313,326, 343. 
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OVERALL SUMMARY 

Part I of this manuscript described a variety of approaches to kaurene natural 

products. Even though the Anal goal was not achieved, much information was gained in 

this study. A tetracyclic intermediate was constructed, but the angular methyl group could 

not be attached. Two tricyclic intermediates were prepared. In one example an appropriate 

appendage could not be added that would have allowed the construct of the fourth ring. 

The other example contained the necessary carbons to achieve the synthesis of kaurene, but 

the fourth ring could not be realized from this intermediate. 

Part n contained an approach to kaurene natural products that was also not 

successful. This approach was based on a Michael addition followed by an oxy-ene 

reaction. The precursor to the oxy-ene reaction could not be prepared. The strategy was 

then changed and based on the cyclization of a bicyclic intermediate to a tricyclic 

intermediate. This intermediate would contain the necessary functionality to construct the 

bicyclo [3.2.1] octane moiety found in this class of natural products. A variety of 

cyclizations were attempted, but the tricyclic precursor was not prepared. 

Part m describes an approach to trixiingolide. This project is only in the infant 

stages, but the route to an advanced intermediate is described. One question yet to be 

answered is the regioselecdve aldol condensation. 
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